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Abstract
This paper reports on our entry to the small-vocabulary,
moving-talker track of the 2nd CHiME challenge. The
system we employ is based on the one that we devel-
oped for the 1st CHiME challenge, the latest results of
which are reported in (Ma and Barker, 2012). Our moti-
vation is to benchmark the system on the new CHiME
challenge and to measure the extent to which it is ro-
bust against speaker motion, a feature of the second chal-
lenge that was absent in the first. The paper presents a
brief overview of our fragment-decoding plus missing-
data imputation system and then makes a component-by-
component analysis of the system performance on both
the 1st and 2nd CHiME challenge datasets. We conclude
that due to its reliance on pitch and spectral cues the sys-
tem is robust against the introduction of small speaker
motions. We achieve an average keyword recognition
score of 85.9% compared to 86.3% for the stationary
speaker condition.

Index Terms: Missing feature imputation, noise-robust
speech recognition, mask estimation.

1. Introduction
For automatic speech recognition (ASR) to work reli-
ably it is typically necessary for the speech signal to be
free from interference from competing noise sources and,
ideally, free from the distorting effects of reverberation.
These conditions are usually ensured by employing a mi-
crophone that is close to the mouth of the speaker. For
example, ASR systems work well with head-mounted mi-
crophones, mobile device held up to the face, and to a
less extent with lapel microphones. However, for a wide
range of applications these ‘close-talking microphone’
configurations are artificial and inhibit natural commu-
nication. There has therefore been growing interest in the
more challenging ‘distant microphone’ scenario [1, 2].

In 2011 the 1st CHiME challenge was organised to
promote research into robust automatic speech recog-
nition in distant microphone settings [3]. The chal-

lenge employed command sentences from a small vo-
cabulary corpus reverberantly mixed into ‘multisource’
background noise recordings collected using a binaural
manikin situated in a domestic living room. The chal-
lenge attracted entries from 13 teams, a representative
sample of which are reported in a recent Special Issue of
Speech Communication [3]. However, a limitation of this
original challenge was that the target talker was mixed
into the backgrounds using a constant binaural room im-
pulse response (measured 2 m in front of the manikin)
and hence the task failed to model the variability in the
receiver-source geometry that would be observed in a real
application scenario (e.g. variabilty due to speaker mo-
tion). The new, 2nd CHiME challenge, that is being con-
sidered in this paper relaxes this assumption. The talker
is still assumed to be standing in a ‘sweet spot’ at a po-
sition 2 m in front of the manikin but the talker now has
the freedom to make small head movements within a re-
gion of 20 cm by 20 cm around this location. This has
been modelled by selecting random start and end loca-
tions for each utterance and interpolating between im-
pulse responses measured on a find grid in the room. Full
details of the challenge construction are provided in [4].

For the original CHiME challenge we developed a
system based on a combination of spectro-temporal frag-
ment decoding plus missing data imputation. Results of
this system are published in [5] and [6]. The purpose
of this current paper is to re-evaluate this system on the
new challenge in order to assess how well it copes with
the increased difficulty of the more realistic mixing con-
ditions. In particular, we break the system down into
a number of components and directly compare the gain
bought by each component on the stationary-speaker 1st
CHiME challenge (CHiME-1) and the moving-speaker
2nd CHiME challenge (CHiME-2). The paper is not in-
tended to introduce original techniques but rather to serve
as a benchmark for our existing system on a new dataset
and to provide some insight into the robustness of our
previously reported results.

Section 2 will provide an overview of the fragment-
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Figure 1: Overview of the fragment-decoding plus missing-data imputation ASR system.

decoding and imputation system. This has been kept de-
liberately brief and non-technical because a detailed pre-
sentation can be found in [5]. Section 3 describes the
experiments that have been run on the new challenge.
Changes that have been necessary to tune the system to
the new data set are discussed. Comparative results are
discussed in Section 4 and an attempt is made to provide
explanation for differences in system behaviour on the
two tasks. Finally, we put the performance of the system
into the context of previously reported CHiME systems
and discuss the potential impact of the work.

2. System Overview
For the 2nd CHiME challenge we have re-employed the
system developed for the 1st CHiME challenge described
in detail in [5] and used an improved imputation algo-
rithm described in [6]. The system is illustrated in Figure
1 and described in overview here. For fuller technical
details the reader is referred to the earlier papers [5, 6].

The system can be described as having three stages:
an ‘auditory’ pre-processing stage that operates on the
binaural acoustic signals and generates a set of spectro-
temporal representations. This is followed by a model-
based spectral-temporal feature denoising stage driven by
a process called ‘fragment decoding’. The heart of this
stage is a speech recognition pass working in the spec-
tral domain and recognition output can be evaluated di-
rectly at this point. De-noised spectral features are then
transformed into the cepstral domain and processed us-
ing a conventional speech recogniser (the 2nd recognition
pass). These three stages are described in the sections that
follow.

2.1. Auditory pre-processing

The front-end processing computes three representations
of the signal that are required for the denoising stage,

i) The auditory spectrogram This is the basic repre-
sentation used to train models for the 1st recogni-

tion pass. The left and right channels are summed
and passed through a Gammatone filterbank. The
log magnitude of the filterbank outputs are smoothed
and sampled at a 100 Hz frame rate to form a
spectro-temporal representation (an ‘auditory spec-
trogram’). Note that by summing the left and right
channels we are taking advantage of the fact that
the target source is known to come from a direction
roughly directly in front on the manikin, i.e. a simple
beam-forming.

ii) The noise floor SNR Mask This is a binary mask
which estimates the spectral temporal regions where
‘signal’ dominates a quasi-stationary noise floor.
Similar masks have formed the basis of many previ-
ous missing data ASR systems (e.g. [7,8]). The noise
floor is estimated using a technique based on the
minimum tracking-based methods popularly used in
speech enhancement [9, 10]. Our implementation
fits a slowly time-varying GMM-based noise floor
model to the energy minima observed in the noisy
auditory spectrogram. The mask is then computed
by comparing the noise floor estimate and the noisy
auditory spectrogram: regions that lie above the
noise floor estimate (i.e. that are above 0 dB SNR)
are labelled as dominated by ‘signal’. Note, these
regions are not necessarily dominated by the target
speech signal, they are just not masked by the noise
floor.

iii) The localised fragments The ‘fragments’ are
spectro-temporal regions that are believed to be
dominated by a single environmental sound source.
They are generated by a ‘primitive grouping’ mod-
ule that first uses multi-pitch analysis to track the
pitch of multiple harmonic sound sources through
time. The pitch estimates at each time frame are then
used to bind Gammatone filterbank channels across
frequency. Finally a simple image-segmentation al-
gorithm operates on remaining regions in order to
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isolate any energy peaks in the auditory spectrogram
that have not yet been accounted for, i.e. the re-
gions dominated by non-periodic energy (e.g. frica-
tive speech regions). A ‘fragment localisation’ mod-
ule then uses both the left and right binaural signals
to estimate an azimuthal direction for each fragment.
The directions are obtained by averaging interau-
ral time difference (ITD) estimates for each time-
frequency element within the fragment.

2.2. Model-based spectro-temporal feature denoising

The core of the feature denoising block is a ‘fragment de-
coder’. This decoder is an extension of the missing-data
approach to ASR [11]. Missing data ASR systems take
noisy spectro-temporal representations and a ‘mask’ in-
dicating which spectro-temporal elements are reliable. In
contrast, the fragment decoder takes a set of fragments
and then considers all masks that can be generated by
the various foreground (i.e. reliable) versus background
(i.e. masked) labellings of the fragments. The decoder
simultaneously searches for the fragment labeling and
speech state sequence that best matches the noisy data
to a set of clean speech models.

We employ a couple of extensions to the basic frag-
ment decoding approach. First, regions that are domi-
nated by noise according to the noise floor SNR mask
are constrained to be labeled as background. This
means that the fragment decoder is only making fore-
ground/background decisions about regions that stand
clear of the noise floor. Second, the fragment location
estimates are used to bias the fragment decoder against
labelling fragments as foreground if they appear to come
from a direction that is too far from 0 degrees (i.e. be-
cause in the CHiME scenario the talker is known to be
standing approximately directly in front of the binaural
manikin). If the location estimates were reliable then
this bias could be very strong, e.g. any fragment originat-
ing from outside a narrow beam around 0 degrees could
be reliably labelled as part of the background. How-
ever, room reverberation makes the location estimates
very unreliable – even allowing for the fact that ITD
estimates are integrated over complete fragments – so
a small empirically-derived bias is used that allows the
foreground/background decision to be dominated by the
goodness of the fragment’s match to the clean speech
models.

The decoder outputs a speech model state sequence
and a foreground/background segmentation that are em-
ployed in the denoising stage. The spectro-temporal fea-
tures in the foreground region are those that are domi-
nated by the target speech source and are at a favourable
local SNR. These features remain unchanged. The fea-
tures in the masked regions are dominated by noise.
These are denoised by replacement with MMSE esti-
mates of the noise-free speech derived from the clean

speech models [12], and specifically from the model state
that the decoding process has aligned to the frame be-
ing denoised. Of course, if the decoder has estimated the
model sequence incorrectly the imputed estimates will be
incorrect. In [6] we found that this problem could be re-
duced by using the N best decodings to form multiple
estimates and then averaging the estimates weighted by
decoding confidence measures.

2.3. Speech recognition

In the final stage a DCT-transform is employed to convert
the reconstructed spectral features into a set of 13 features
in the cepstral domain, i.e. Gammatone filterbank cepstral
coefficients (GFCCs). Delta and delta-delta features are
added to form a 39-dimensional feature vector. Word-
level HMMs with the same structure as those of CHiME
challenge baseline system are trained using the training
data sets specified by the challenge: a reverberated but
noise-free set and a noise-added set.

3. Experiments and Results
3.1. Experimental setup and system tuning

The CHiME-1 and CHiME-2 challenges use identical
training and test sets and differ only in the manner that
the speech and background are mixed (stationary speaker
vs. moving speaker). The similarity of the two challenges
allows results to be directly compared. Further, for both
CHiME-1 and CHiME-2, we employ the same HMM set
up and training regime as employed in the CHiME base-
line system: in particular we use word-based HMMs and
train 34 speaker dependent models matched to the talkers
in the CHiME test set.

The configuration of the recognition system was al-
most exactly the same as for the CHiME-1 evaluation as
described in [5] (and the N -best extension in [6]). The
remainder of this section details notable differences.

Sampling rate In the previous CHiME challenge the
data was distributed at 48 kHz sampling rate and our fil-
terbank was designed with 32 filter channels with filter
centre frequencies evenly spaced between 50 Hz and 8
kHz on an equivalent rectangular bandwidth scale [13].
The current challenge data was distributed at 16 kHz. We
wished to use an identical representation, so in order to
avoid aliasing in the highest frequencies band, the sig-
nals were first upsampled to match the 48 kHz rate of the
earlier challenge.

Fragment localisation As discussed earlier the frag-
ment decoding system is able to use a fragment location
estimate to bias the labelling of the fragment towards ei-
ther being foreground or background. In the previous
system this was achieved by tuning three parameters: an
azimuth threshold, T ; a foreground/background bias for
‘lateral’ fragments, (i.e. those with absolute azimuth es-
timates greater than the threshold) expressed as proba-
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bility Pl; and a foreground/background bias for ‘central’
fragments (i.e. those with absolute azimuth estimates less
than the threshold), expressed as probability Pc. The az-
imuth threshold was tuned by first using knowledge of
the premixed speech and background signals to correctly
assign the foreground/background label to a set of can-
didate fragments. Then the histograms of the estimated
azimuths for each class were examined. It was seen that
fragments labeled with absolute azimuths greater than 18
degrees were mostly coming from competing sources.
Once this 18 degree threshold was selected, Pl and Pc

were tuned empirically by running experiments on the
development test set. For the new data the same anal-
ysis was performed and it was seen that the distribu-
tions of estimated fragment azimuths for the foreground
and background classes were less divergent. Many fore-
ground fragments had very large azimuth estimates. This
is possibly due to the fact that, i) the speech target mo-
tion makes the fragments harder to localise reliably, and
ii) the lower sampling rate reduces the accuracy of the
ITD estimates from which the localisation estimates are
derived. When using the previous parameters the local-
isation information failed to improve recognition perfor-
mance. Widening the threshold to 30 degrees and retun-
ing Pl and Pc allowed localisation cues to once again con-
fer a modest benefit (see next section).

N -best decoding In [6] we reported improved re-
sults using smoothed imputations constructed by taking
a weighted average of individual imputations obtained
from the N -best speech fragment decodings. Our ear-
lier experiments on the CHiME-1 development test set
showed the optimal value of N to be 5. Using the same
value on the current task proved to provide no benefit to
the development test set performance. A value of 3 pro-
vided a better result and was therefore used for the final
system evaluation on the test set.

3.2. Results and analysis

Table 1 presents results for variations of the system eval-
uated on the CHiME-2 development test set, and tables
2 and 3 compare final test set performance for CHiME-2
and the earlier CHiME-1 respectively. All figures repre-
sent keyword accuracies as required by the challenge pro-
tocol (see [4]). The result labeled MFCC is the recogni-
tion performance obtained using the baseline non-robust
recognition system that is distributed with the challenge
data. (Although the baseline system is not designed to be
robust it operates on features extracted from the sum of
left and right channels and hence noise from lateral di-
rections is somewhat suppressed, i.e. by beam-forming).
Note that when averaged across conditions the base-
line performance is nearly 2% greater for CHiME-2. In
CHiME-1 the target talker is stationary and a constant im-
pulse is used for mixing the data sets but different record-
ings of the 2 m 0 degree impulse response were used to

prepare the training set data and test set data. Differences
between the two impulse responses introduce a small
amount of model mismatch. In contrast, in CHiME-2 the
talker makes small movements that are simulated by in-
terpolating between pairs of impulse responses measured
at positions chosen within a small area directly ahead of
the recording manikin. Although the movement makes
the task more challenging (i.e. it is harder to use spatial
filtering to separate the target and masker), the impulse
response statistics are matched across the training and
test sets and the variability in impulse response observed
in the training data introduces some robustness against
small changes in the impulse responses observed in the
test data.

Table 1: Keyword accuracies (%) using different system
configurations for the CHiME-2 development test set.

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB ave.
SFD 72.58 74.75 79.83 85.42 87.83 88.58 81.50
+NF 73.75 75.67 81.33 86.08 87.58 88.92 82.22
+Loc 75.08 75.67 82.08 86.00 88.00 89.08 82.65
+Loc+NF 75.42 77.58 83.58 86.92 89.08 90.17 83.79
Imp.1 69.83 74.75 81.00 84.42 89.17 89.83 81.50
Imp.1 MC 76.58 78.33 84.00 87.83 90.50 90.83 84.68
Imp.3 MC 77.00 78.25 84.33 87.67 89.75 91.17 84.70

Table 2: Keyword accuracies (%) using different system
configurations for the CHiME-2 evaluation test set.

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB ave.
MFCC 32.17 38.33 52.08 62.67 76.08 83.83 57.52
SFD 72.25 75.33 80.92 84.58 87.17 89.00 81.54
+NF 74.58 77.75 83.17 85.33 88.67 90.17 83.28
+loc 74.00 76.83 81.50 85.00 88.17 89.83 82.56
+NF+loc 76.50 78.25 84.33 86.25 89.00 89.75 84.01
Imp.1 72.50 74.67 83.08 85.83 88.92 91.00 82.67
Imp.1 MC 77.25 79.92 85.50 88.92 90.42 92.17 85.70
Imp.3 MC 77.75 80.08 85.25 88.83 91.08 92.50 85.92

Table 3: Keyword accuracies (%) using different system
configurations for the CHiME-1 evaluation test set.

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB ave.
MFCC 30.33 35.42 49.50 62.92 75.00 82.42 55.93
SFD 71.75 72.75 78.75 82.83 85.08 87.25 79.74
+NF 74.17 76.33 81.25 85.00 86.92 87.00 81.78
+loc 74.00 75.83 81.33 85.33 87.50 88.67 82.11
+NF+loc 76.00 78.00 83.17 86.08 88.33 88.42 83.33
Imp.1 MC 78.08 80.58 85.75 88.08 91.00 91.50 85.83
Imp.3 MC 78.50 81.25 85.58 88.25 91.08 93.33 86.33

The result labeled SFD is the output of the base-
line speech fragment decoding system, i.e. without use of
adaptive noise flooring, fragment localisation, or spectral
imputation. Using SFD, the average CHiME-2 final test
set performance is increased from 57.5% to 81.5%. Note
that the better performance of the CHiME-2 baseline
with respect to CHiME-1 is also reflected in the CHiME-
1 and CHiME-2 SFD results. Introducing the adaptive
noise floor component (+NF) improves performance for
CHiME-2 by 1.7%. This is comparable to the 2.0% im-
provement that the adaptive noise floor brought to the



57

CHiME-1 evaluation. In contrast, using the fragment lo-
calisation component (+loc) which previously produced
a 2.4% improvement is now only earning an additional
1.0%. This is not surprising given the decreased discrim-
inability between the azimuth estimates of foreground
and background fragments and the widening of the lateral
fragment rejection threshold discussed earlier. As found
in our previous work, the adaptive noise floor and local-
isation systems can be combined (+NF+loc), and doing
so provided a total performance increase of 2.5% over
the SFD baseline for CHiME-2 compared to 3.6% for
CHiME-1.

The SFD system +NF+loc was used to provide state
sequence and mask estimates to drive the imputation sys-
tem. Decoding cepstral transforms of the imputed masks
using models training on the reverberated noise-free data,
Imp.1, led to a drop in performance of 1.5%. This can be
explained by a failure of the SFD denoising to remove
all fragments of noise. Ideally this mismatch should be
avoided in the final pass by employing models trained
on a denoised version of the noise-added training data.
Here though we followed the approach we used previ-
ously, i.e. we increased robustness by retraining the mod-
els using a multiconidition training set. The multicon-
dition training set was made by combining the supplied
noise-free training set and the noise-added training set
(Imp.1 MC). Using the new models produced an increase
in performance of 3.0% relative to using the noise-free
models and an improvement of 1.7% over the +NF+loc
system. The same step in the previous evaluation led to
an improvement of 2.5% over +NF+loc. The difference
can perhaps be attributed to differences in the multicon-
dition training data set. For CHiME-1, training data was
mixed at the target SNR levels employed in the test sets,
i.e. -6 dB to +9 dB. For CHiME-2, the supplied noise-
added training set consists of utterances that are mixed at
random locations in the CHiME noise background with
no regard to the SNRs produced.

Finally, combining N -best imputations provided a
disappointing 0.2% improvement compared to 0.5% im-
provement for the CHiME-1 task. Note, tuning of N on
the development test set led to an optimum of 5 previ-
ously and 3 for the new data. The 0.2% does not represent
a statistically meaningful improvement. It is unclear why
the N -best decoding technique has failed to convey an
advantage on the new task, perhaps the greater variability
in the models caused by the variable target position re-
duces the impact of mismatch due to poor imputation and
hence lessens the advantage of averaging over N -best im-
putations.

The overall result for the final system is 85.92% for
the moving talker CHiME task (CHiME-2) compared to
86.33% for the stationary task (CHiME-1).

4. Discussion and Conclusions
Despite the fact that the CHiME-2 challenges introduces
speaker motion as an additional source of target speech
variability our overall performance is only reduced by
0.4%. The fact that the performance drop is small is
largely due to the fact that the system is making small ad-
vantage of spatial filtering in the first place. Comparing
the +NF and +NF+loc the additional benefit of fragment
localisation was 1.5% and reduced to 0.7% in the current
challenge.

It may be noted that our overall system performance
is somewhat below that of the very best performances
previously reported for competing systems on the 1st
CHiME challenge – some of which approached human
speech recognition performance (e.g. [14,15]). However,
in contrast to these highly optimised systems, our system
is using a comparatively simple ‘back-end’. In fact, the
final recognition pass uses nothing more than the some-
what naive training and recognition set-up of the baseline
CHiME recogniser. Once the features have been denoised
by the fragment-decoding and imputation stage there are
a multitude of conventional techniques that can be ap-
plied to further increase performance, e.g. model opti-
misations such as state-clustering, discriminative model
training, more sophisticated speaker adaptation, super-
vised and unsupervised noise adaptation, and robust de-
coding strategies such as dynamic variance adaptation
or uncertainty decoding (back-end techniques that have
been applied with success by other CHiME challenge
systems [3]). In particular, the 2nd pass recognition mod-
els should be retrained on data that has been processed by
the denoising stage to reduce potential mismatch between
denoised and noise-free speech.

Finally, it may be argued that because our system
employs an unconventional denoising strategy that relies
heavily on multi-pitch tracking, auditory representations
and fragment decoding, the system may have quite differ-
ent strengths and vulnerabilities in comparison with more
established techniques. In this respect the denoised fea-
tures that the system generates may be suitable candidates
for including in multistream systems that take advantage
of feature complementarity (e.g. [15]). This possibil-
ity will be open for investigation because following the
CHiME challenge rules the system’s recognition outputs
have been submitted alongside the correctness results. In
the same spirit we also plan to share the features them-
selves and to make our CHiME system code available on
request.
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